어려워하는 수학의 주제에 대한 쉬운 설명 그리고 일상의 이야기

이차함수 3

이차방정식과 이차함수4 - 근의분리

$x$에 관한 이차방정식 $x^2 -2(m-4)x+2m=0$의 근이 다음 조건을 만족하도록 실수 $m$의 값의 범위를 정하여라. (1) 두 근이 모두 $3$보다 크다. (2) 두 근이 모두 $3$보다 작다. (3) $3$이 두 근 사이에 있다. (1)두 근이 모두 $3$보다 크면, $f(x)=x^2 -2(m-4)+2m$라 하자. ① 두 근을 가져야한다. → $D \ge 0$ 중근인 경우도 두 근이라고 생각해야한다. $x^2 -2(m-4)x+2m=0$의 두 근은 $f(x)=x^2 -2(m-4)+2m$의 두 $x$절편으로 생각 할 수 있다. 두 근을 $\alpha$, $\beta$라 하면 $\alpha + \beta =2(m-4)$ ② 두 근이 모두 $3$보다 크면 $f(x)$의 두 $x$절편이 모두 $3$..

수학 2021.03.14 (9)

이차방정식과 이차함수3

$0 \le x \le 2$에서 함수 $f(x)=-2x^2 -4kx -2k^2 +k+1$의 최댓값이 $0$이 되도록 하는 모든 실수 $k$의 값의 합을 구하여라. 먼저 이차함수 $f(x)$를 정리하면 $f(x)=-2x^2 -4kx -2k^2 +k+1$ $~~~~~~~=-2(x^2 +2kx) -2k^2 +k+2$ $~~~~~~~=-2(x+k)^2 +k+2$ $f(x)$의 대칭축의 방정식은 $x=-k$이고 $f(x)$는 위로 볼록의 그래프이므로 대칭축과의 거리가 가까울수록 대응되는 $y$좌표가 높다. 따라서 최댓값이 달라지는 경우는 다음 세 가지로 생각 할 수 있다. 빨간색은 범위 $0 \le x \le 2$의 구간을 나타낸다. ① $-k \le 0$ $(k \ge 0)$ 인 경우 $x=-k$와 $x=0$사..

수학/수상 2021.03.12 (10)

이차방정식과 이차함수2

직선 $y= - {1 \over4 }x+1$이 $y$축과 만나는 점을 $A$, $x$축과 만나는 점을 $B$라 하자. 점 $P(a,~b)$가 점 $A$에서 직선 $y= - {1 \over4 }x+1$을 따라 점 $B$까지 움직일 때, $a^2 +8b+1$의 최댓값을 구하여라. 먼저 $A$, $B$의 좌표를 구하자. $y= - {1 \over4 }x+1$이 $y$축과 만나는 점은 $(0,~1)$ 따라서 $A(0,~1)$ $y= - {1 \over4 }x+1$이 $x$축과 만나는 점은 $(4,~0)$ 따라서 $B(4,~0)$ $P(a,~b)$는 직선 $y= - {1 \over4 }x+1$을 따라 움직이므로 직선 $y= - {1 \over4 }x+1$ 위의 점이다. 따라서 $b= - {1 \over4 }a+1..

수학/수상 2021.03.12